Origami-based Drag Sail for CubeSat Propellant-free Maneuvering

Colin Mason, Grace Tilton, Nomita Vazirani, Joseph Spinazola, David Guglielmo, Seth Robinson, Riccardo Bevilacqua, Johnson Samuel Department of Mechanical, Aerospace, and Nuclear Engineering Rensselaer Polytechnic Institute, Troy, NY USA

The 5th Nano-Satellite Symposium, November 22, 2013

Acknowledgements: This research was supported by the U.S. Office of Naval Research (ONR) Contract No. N00014-13-1-0536, and by Rensselaer Polytechnic Institute internal funding.

		1 4 /	
Prev	10116	WVor	6
	1045		

Future Work

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Future Work

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Outline

2 Current Research

- Introduction to Drag Sail Subsystem
- Differential Drag Basics
- Relative Maneuvering with Differential Drag
- Sail Folding Details
- Drag Sail Subsystem Hardware
- Preliminary Testing Results

0		34/ 1
	ravious	WORK
	revious	VVOIR

Future Work

Summary

▲ロト ▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ● 回 ● の Q @

Previous Work in Space Sails

- Sails have been used to propel satellites and de-orbit
- Some examples:
 - Joint DLR, JPL/NASA and ESA solar sail¹
 - Nanosail-D
 - AEOLDOS
- All are single-deployment

Fig. 1: Nanosail-D (Image Courtesy NASA)

Future Work

Summary

Introduction to Drag Sail Subsystem

Purpose of Drag Sail Subsystem

- Allows propellant-free maneuvering
- Designed as COTS component for CubeSats
- Intended for use in PADDLES (shown), developed at RPI
- Uses differential drag to perform relative maneuvering

Fig. 2: PADDLES Open Configuration

Differential Drag Basics

Differential Drag Basics

- Used when relative orbit is more important than absolute orbit
- Additional drag tends to circularize the orbit
- No thrusters are needed, so no thrust shock and no plume impingement
- Movable panels have been proposed as another method of varying drag

Fig. 3: Varying Drag With Adjustable Panels

Differential Drag Basics

Differential Drag Basics

- PADDLES maneuvers by varying the cross-sectional area to vary drag
- Rendezvous between two satellites has already been simulated using STK/MATLAB²

Fig. 4: Varying Drag With Adjustable Panels

Previous Work

Current Research

Future Work

Summary

Relative Maneuvering with Differential Drag

Relative Maneuvering with Differential Drag

- Opening the sail sends PADDLES into a lower orbit, closing it maintains the orbit
- The drag sail can remove more energy from the orbit than it takes to open the sail
- PADDLES can only remove energy from the orbit

Fig. 5: PADDLES Relative Maneuvering

- 日本 - 1 日本 - 日本 - 日本

Previous Work

Current Research

Future Work

Summary

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Relative Maneuvering with Differential Drag

How do We Create Differential Drag?

Fig. 6: Differential Drag Sail Used in PADDLES

Future Work

Summary

Sail Folding Details

Sail Folding Details

• Sail folding pattern is derived from existing origami pattern

Fig. 7: ADAMUS Flyer Based on Origami Pattern By Jeremy Shafer

Future Work

Sail Folding Details

Sail Folding Details

- Sail folding pattern is derived from existing origami pattern
- Extending the pattern in each direction allow larger sails

Fig. 8: MATLAB-Generated Folding Pattern

Future Work

Sail Folding Details

Sail Folding Details

- Sail folding pattern is derived from existing origami pattern
- Extending the pattern in each direction allow larger sails
- Some optimization is necessary to minimize the folded size
- Sail is folded from a Mylar sheet
- 0.2m x 0.2m x 0.5mm case shown

Future Work

Summary

Drag Sail Subsystem Hardware

Drag Sail Subsystem Hardware and Operation

- Sail ejects before opening
- Four coiled booms
- Origami pattern for sail
- Rotating the center opens and closes the sail
- Corners of sail track booms
- Stored during launch and ejected prior to use
- 1/2U enclosure
- Power and control connections required

Fig. 10: Direction of rotation of the drag sail when opening

Future Work

Summary

Drag Sail Subsystem Hardware

Drag Sail Subsystem Hardware and Operation

- Sail ejects before opening
- Four coiled booms
- Origami pattern for sail
- Rotating the center opens and closes the sail
- Corners of sail track booms
- Stored during launch and ejected prior to use
- 1/2U enclosure
- Power and control connections required

Future Work

Summary

Drag Sail Subsystem Hardware

Hardware Details

- Faulhaber motor is designed to work in space (although not space-tested)
- All other parts are manufactured in house
- Compatible with CubeSat standards

Fig. 12: Sail subsystem exploded view

Future Work

Summary

Drag Sail Subsystem Hardware

Sail Deployment and Operation

Fig. 14: Sail Prototype Operation

Fig. 13: Sail subsystem exploded view

Future Work

Summary

Preliminary Testing Results

Preliminary Testing Results

Table 1: Sail Fatigue Test Results

Sail	Successful Cycles	Comments
A	300	Encapsulation Failure
В	200	Incorrect command to motor
С	698	Encapsulation failure
D	2500	Successful
E	3000	Successful
F	4000	Successful

- Only anticipate a few open-close cycles
- Sails were initially failing at the slider attachments
- Improving the construction prevents fatigue failure
- Further testing is necessary for space qualification

Future Work

Summary

Future Work

Fig. 15: Current Prototype of Drag Sail Subsystem

Fig. 16: Deployment Method in Progress

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Future Work

Summary

Summary and Conclusions

- Created deployable retractable ¹/₂U drag sail subsystem
- Drag sail is used to maneuver PADDLES using differential drag
- Intended to be used as a COTS component for CubeSats

- Successful prototype fatigue testing
- U.S. Patent pending
- Differential drag used to maneuver
- Requires no propellant

Summary

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Reference Slides

Future Work

Summary

Sail Folding Equations

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Future Work

Summary

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Sail Folding Equations

$$p_{f} = \frac{\text{minimum thickness}}{\text{actual thickness}} \quad 0 < p_{f} \le 1$$
$$d = \underbrace{\sqrt{2}\frac{l}{2N}}_{\text{Center}} + \underbrace{\frac{2(N-1)t}{p_{f}}}_{\text{Wrapping}}$$
$$h = \frac{l}{2N}$$